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Sanità, Viale Regina Elena 299, 00161 Roma, Italy
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Abstract
We study the canonical solution of a family of classical n-vector spin models
on a generic d-dimensional lattice; the couplings between two spins decay as
the inverse of their distance raised to the power α, with α < d . The control
of the thermodynamic limit requires the introduction of a rescaling factor
in the potential energy, which makes the model extensive but not additive. A
detailed analysis of the asymptotic spectral properties of the matrix of couplings
was necessary to justify the saddle point method applied to the integration of
functions depending on a diverging number of variables. The properties of a
class of functions related to the modified Bessel functions had to be investigated.
For given n, and for any α, d and lattice geometry, the solution is equivalent to
that of the α = 0 model, where the dimensionality d and the geometry of the
lattice are irrelevant.

PACS numbers: 05.20.−y, 05.50.+q, 05.70.Ce

1. Introduction

The conditions for the existence of a well-defined thermodynamic limit [1, 2] are not met in
systems with long-range interactions [3]. A pair potential is long range when its modulus
decays, at large distance, not faster than the inverse of the distance raised to d, the spatial
dimension (this distinction between long- and short-range interactions is at variance with the
terminology generally used in critical phenomena; the two differ in the range d < α < d + 2;
see, e.g., [4]). In this case the thermodynamic potentials of the system are not additive, since
they are not the sum of those of its component macroscopic parts; besides, their densities
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(i.e., the thermodynamic potentials per particle) diverge in the thermodynamic limit, namely
extensivity is lost. A clear distinction between additivity and extensivity has been introduced
in [5].

The gravitational interaction is the most relevant case of a continuous long-range potential.
However, since the classic paper by Ising [6], magnetic models on a lattice are the most
used to investigate the statistical physics of interacting many-body systems, because their
mathematical treatment, although still difficult, is often more affordable than that of continuous
systems. The introduction of long-range couplings in magnetic models on a lattice was started
in the 1960s, when the basic mathematical techniques were established [7].

This paper studies the equilibrium statistical mechanics of classical n-vector spins (i.e.,
n-dimensional unit vectors) fixed on the nodes of a generic d-dimensional lattice, and
interacting pairwise through a long-range potential; generic values of n and d are considered.
The couplings decay as the inverse of the distances between the spins raised to the power
α; if α is not larger than d the energy density of the system diverges in the thermodynamic
limit, and the interaction is also called non-integrable. This divergence can be cured with a
Kac’s prescription, that is gauging the potential energy with an appropriate scaling function
of N, the number of spins, and d [8]. Then extensivity is enforced through control of the
thermodynamic limit but, due to the long-range couplings, additivity does not hold, and
ensemble equivalence, whose proof is based on the possibility of separating the energy of a
subsystem from that of the whole, might not be guaranteed in that limit [5, 9]. We study
our system in the canonical ensemble and find the exact solution, and also show that for this
class of systems the microcanonical and the canonical ensembles are equivalent, in spite of
the non-additivity.

There have been different approaches to the statistical mechanics of long-range systems
relevant for the study of condensed matter. In the framework of the canonical partition
function, classic works [8, 10] have focused on the problem of phase transitions in continuous
systems through the use of an integrable interaction in which the van der Waals limit (i.e.,
the limit of long-range, vanishing interaction) is taken after the thermodynamic limit. This
scheme can be extended to magnetic systems [11]. On the other hand, Kac’s prescription in
which the interaction is rescaled with a system-size-dependent factor, allows us to perform at
the same time the thermodynamic limit and the limit of vanishing strength of a non-integrable
interaction. A recent paper [12] studies both the van der Waals limit [8, 10] and the use
of full periodic boundary conditions to build an effective, distance-independent, mean-field
interaction. Periodic boundary conditions are generally imposed considering infinite periodic
replicas of the system in all directions; in the full periodic conditions each spin interacts
not only with the spins in the original system but also with the infinitely replicated images.
The periodic conditions we are considering correspond to the so-called minimum image
convention, following which each spin interacts only with the spins, original or in the closest
image, falling within a given distance; the non-integrable interaction in this case keeps its
distance dependence. The purpose here is to show by calculation the equivalence, as far as
equilibrium statistical thermodynamics is concerned, of all the long-range systems differing
in the values of n, d and the geometry of the lattice. Some quantitative differences (e.g., the
value of the critical temperature) are found between systems with different n, but the overall
behaviour is the same. This equivalence also holds with respect to the dependence of the
coupling on the distance between spins, as long as it remains long range. Here a power
law dependence is considered, but in the discussion it is argued that any other form of the
long-range coupling would have brought us to the same results.

A particular case of our model, n = 1 (i.e., Ising spins) has already been studied [13–15],
and analogous results have been obtained; Bergersen et al [13], in particular, have given a
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detailed description of the behaviour of the spin–spin correlation function, while Vollmayr-Lee
and Luijten [15] use full periodic boundary conditions as in [12]. Another related paper [16],
with results similar to ours, concerns long-range q-state Potts models.

Some works on gravitational systems where the statistical behaviour is studied outside
the framework of the canonical partition function are worth mentioning: the classic paper by
Kiessling [17] and the more recent paper by Ispolatov and Cohen [18] on the microcanonical
solution of continuous systems with 1/rα attractive interactions. Also noteworthy is the paper
by Kesten and Schonmann [19], who obtain a mean-field solution similar to that worked out
here, but for a system with first neighbour interaction and the dimensionality d going to infinity.

In section 2 we present the class of long-range magnetic models that we consider.
Expressions for the partition function are obtained in section 3, while the solution of the
saddle point equation is shown in section 4, the central part of this paper. In section 5 we
prove ensemble equivalence. Concluding remarks are given in section 6.

2. The model

This work considers a family of classical n-vector spin models [20], which represent the
‘infinite spin’ limit of magnetic quantum systems [21]. In a previous brief work [22]
the particular case n = 2, a kind of XY -model, was studied and a few details were given; the
case n = 3 corresponds to a classical Heisenberg model. The limit n → ∞ reproduces the
spherical model of Berlin and Kac [23, 24].

The Hamiltonian considered here is

H = 1

2

N∑
i,j=1

Jij (1 − Si · Sj ). (1)

For each i the spin Si is a unit n-dimensional vector; its position can be specified by n − 1
angles and its Cartesian coordinates are related to these angles through the definition of the
polar coordinates in Rn. The index i = 1, . . . , N labels the sites of a generic d-dimensional
lattice, with d being integer. A free choice of the diagonal terms Jii is allowed, because of
the constraint S2

i = 1. The couplings decay as an inverse power of the distance rij between
lattice sites i and j :

Jij = 1

rα
ij

(i �= j) (2)

with periodic boundary conditions and the nearest image convention for the distance rij ;
α � 0 sets the range of the interaction, which is long range if α � d and short range if α > d .
Different values of d, n and α select different models in the family; most of the work has
been done in the study of models with α > d , and α = ∞ is the limit of nearest neighbour
interactions. The case α < d is considered here; then the energy (1) is not extensive and
the partition function does not admit a well-defined thermodynamic limit. Extensivity can be
recovered, through Kac’s prescription, by rescaling

Jij −→ Jij

Ñ
(3)

where Ñ is a function of N,α, d and the geometry of the lattice, and it is used to control the
thermodynamic limit. For α = 0, Ñ is N.

The case n = 2 has been previously studied [22]; in that short paper, where only a few
mathematical arguments and details were given, only the model represented by planar rotators
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on a lattice was considered, but with the addition of a kinetic term in canonical variables,
conjugate to the angles. The kinetic energy, which in the canonical ensemble gives an additive
trivial contribution to the thermodynamic potentials, is not considered here; short comments
on this will be made in the following. Computation of the partition function for n = 2 has
shown its universality in α: the free energy does not depend on the value of α < d and is
thus equal to the mean-field one for α = 0. The model of planar rotators, n = 2, has also
been studied from a dynamical point of view: the universality of the thermodynamics in a
one-dimensional lattice (d = 1) with respect to α < 1 was suggested by the numerical study
in [25]; interesting metastable states have been observed for α = 0 [26, 27] and for α < 1
with d = 1 [28].

2.1. Thermodynamic limit

From the form of H it is clear, since Si is a unit vector, that the values of Jii can be chosen
arbitrarily, as long as they are finite. We will use this freedom below, for the computation of
the partition function.

We have to consider the problem of the rescaling of the interaction parameters, to control
the thermodynamic limit. For classical lattice systems the existence of the thermodynamic limit
is guaranteed by a restriction on the long-range part of the potential energy. For translationally
invariant interactions, i.e., when in our case Jij depends only on the distance vector from site
i to site j , the restriction takes the form

lim
N→∞

N∑
j=1

|Jij | < ∞ (4)

where i can take any value, since the translational invariance implies that the above sum is
independent of i. It corresponds to an extensivity requirement for the energy H. The rigorous
demonstration of the sufficiency of this condition for the existence of the thermodynamic limit
of the partition function can be found in [2], where the Ising model (n = 1) is considered, but
the procedure can be extended to the general case.

For our system we introduce translational invariance also for finite N, through the use of
periodic boundary conditions and a choice of the same finite value b for all the diagonal terms
Jii ; this is convenient for many steps of the analysis of our model. One could consider free
boundary conditions, breaking translational invariance. In that case we expect that the saddle
point equations (see section 4) could have non-homogeneous solutions, which minimize
the free energy and display border effects depending on α (see the last section for further
discussion).

Apart from these considerations, in our case condition (4) requires the analysis of the
i-independent quantity

S =
∑

j

1

rα
ij

(5)

in the N → ∞ limit, and dropping the j = i term, since the single value of Jii does not
determine the convergence property of (5). It is easily seen that the large N behaviour of (5)
for α < d is S ∼ N1−α/d , and the rescaling (3) can be obtained with Ñ = b + S = ∑

j Jij ,
which, as noted, is independent of i. In appendix A we study the spectral properties of the
matrix Jij , needed in our analysis.
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3. The partition function

In this section we derive expressions for the partition functions for α = 0 and for general
α < d . We do not explicitly consider the marginal case α = d . However, in the discussion we
will comment on this point and on possible more general forms of the long-range couplings.

3.1. The case α = 0

For α = 0 the interaction is homogeneous, i.e., each spin interacts with all the others with the
same strength. The rescaled Hamiltonian is

H = 1

2N

N∑
i,j=1

(1 − Si · Sj ) − h ·
N∑

i=1

Si (6)

where we also include an external magnetic field h, which is coupled in the usual way to the
spin vectors Si . A particular α = 0 model, that with n = 2 (planar rotators), has already been
considered in [29]. The partition function is

Z =
∫

dN� e−βH (7)

where β is the inverse temperature, d�i is the surface element of the unit sphere in dimension
n � 2, and dN� = d�1 · · · d�N ; for n = 1 the integral is replaced by a sum on all the possible
Ising spin configurations:

∑
S1=±1,...,SN =±1 e−βH . Here, and later for the general case, we do

not consider the kinetic part, which in the classical partition function trivially decouples. With
B = βh and C = exp(−Nβ/2), we can rewrite

Z = C

∫
dN� exp


 β

2N

∣∣∣∣∣
∑

i

Si

∣∣∣∣∣
2

+ B ·
∑

i

Si


 . (8)

Using the Gaussian transformation

exp(aS2) = 1√
4πa

∫ +∞

−∞
dz exp

(
− z2

4a
+ Sz

)
a > 0 (9)

on each term of the square modulus of the vector
∑

i Si (we emphasize that the above
expression is valid when a > 0, or more generally, for complex a, when its real part is greater
than 0), we linearize the quadratic term in (8) and obtain

Z = C

(
N

2πβ

)n/2 ∫
dz exp

(
− N

2β
z2

)∫
dN� exp

[∑
i

Si · (z + B)

]
(10)

where dz = dz1 · · · dzn. Here and in the following the notation b2 will denote, interchangeably
with b2, the scalar product of the vector b with itself, i.e., its square modulus. The last integral
separates on the site i and gives N identical contributions, the functional form of which depends
on the spin dimension n. In appendix B we show a more convenient way of writing these
integrals on the unit sphere; besides, we introduce the notation, which expresses the surface
integrals in (10) in terms (for proper values of n) of a function Gn(x) and of the area �n of
the unit sphere in n dimensions. In appendix B we also prove some necessary properties of
Gn(x) and of its derivatives. Following this notation we rewrite the partition function as

Z = C�N
n−1

(
N

2πβ

)n/2 ∫
dz exp

{
N

[
− 1

2β
z2 + ln Gn−2 (|z + B|)

]}
(11)

which is analysed in section 4.
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3.2. The case 0 � α < d

With the help of the analysis in appendix A we are able to find an exact solution of the rescaled
model defined by the Hamiltonian:

H = 1

2Ñ

N∑
ij=1

1 − Si · Sj

rα
ij

− h ·
N∑

i=1

Si (12)

with α < d, Jij = 1
/
rα
ij , Ñ defined as in (A.5), and 1

/
rα
ii ≡ b defined so as to have (A.7). We

will show that thermodynamic universality holds among all the rescaled α < d cases, in the
sense that the specific free energy, the magnetization and the equation of state are the same.

In the following, whenever a site-dependent n-dimensional vector such as Si occurs we
indicate its components with double index quantities Siµ with the latin index varying in the
range 1, . . . , N and the greek index in the range 1, . . . , n. The n-dimensional vector at site
i is indicated with boldface letters Si while we let ST

µ indicate the N-dimensional row vector
(S1µ, . . . , SNµ), and Sµ the corresponding transposed column vector. The components of a
site-independent n-dimensional vector, such as h in (12), will be indicated with, e.g., hµ.

The partition function for the model is given by equation (7) with the new Hamiltonian.
Analogously with the case α = 0, we define Bµ = βhµ and C = exp

[− (β/2Ñ)
∑

ij Jij

] =
exp(−Nβ/2); due to the site independenceof the magnetic field, we have BT

µ = (Bµ, . . . , Bµ).
Introducing the matrix Rij = (β/2Ñ)Jij we can rewrite the partition function in matrix form

Z = C

∫
dN� exp

[∑
µ

(
ST

µRSµ + ST
µBµ

)]
. (13)

As before, we want to make use of Gaussian transformations to linearize the quadratic
term. Then we first diagonalize the symmetric matrix R with the unitary matrix V such
that V RV T = D, with Dij = Riδij , where Ri , the eigenvalues of R, are related to the
eigenvalues λi of Jij by Ri = (β/2Ñ)λi . So we can write the first part of the exponent as∑

µ

ST
µRSµ =

∑
iµ

Riσ
2
iµ (14)

where σµ = V Sµ. Because of (A.7) all the eigenvalues Ri are positive and we can apply the
Gaussian transformation (9) to each term on the right-hand side of (14), obtaining

exp


∑

iµ

Riσ
2
iµ


 = 1

[(4π)N det R]
n
2

∫ 
∏

iµ

dviµ exp

[
− v2

iµ

4Ri

+ σiµviµ

]
 (15)

where the appearance of det R in the denominator is due to the relation
∏

i Ri = det R. Noting
that R−1

i = (D−1)ii , with the change of variables defined by vµ = V z
µ

, and introducing the

notation
∏

iµ dziµ = dNnz, the previous expression can be written as

exp


∑

iµ

Riσ
2
iµ


 = 1

[(4π)N det R]
n
2

∫
dNnz exp

(
−1

4

∑
µ

zT
µ
R−1z

µ
+
∑

µ

ST
µz

µ

)
. (16)

Inserting this in (13), and noting that
∑

µ ST
µ(z

µ
+ Bµ) = ∑

i Si · (zi + B), the partition
function becomes

Z = C

[(4π)N det R]
n
2

∫
dNnz exp

(
−1

4

∑
µ

zT
µ
R−1z

µ

)∫
dN� exp

(∑
i

Si · (zi + B)

)
.

(17)
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This expression is similar to (10), but with an n-component integration variable z for each site i.
With the same notation used in subsection 3.1 and discussed in appendix B, we therefore obtain

Z = C�N
n−1

[(4π)N det R]
n
2

∫
dNnz exp

[
−1

4

∑
µ

zT
µ
R−1z

µ
+
∑

i

ln Gn−2 (|zi + B|)
]

. (18)

4. The saddle point computation of the free energy

We complete here the solution; most of the technical details are given in appendix C.

4.1. The case α = 0

The integral (11) is computed with the saddle point method; therefore, we need to find the
stationary points of the function in square brackets in the exponent, and consider those that
are maxima; the dominant contribution to the integral will be determined by the absolute
maximum. If we call f (z) the function in square brackets in (11), the stationary points are
given by the solutions of the system of n equations (one for each component zµ of z):

∂f

∂zµ

= − 1

β
zµ + gn−2(|z + B|)zµ + Bµ

|z + B| = 0 µ = 1, 2, . . . , n (19)

where the function g is the logarithmic derivative of G. The free energy per particle (or specific
free energy) will be given by

−βF = lim
N→∞

1

N
ln Z = −β

2
+ ln �n−1 + max

z

[
− 1

2β
z2 + ln Gn−2 (|z + B|)

]

≡− β

2
+ ln �n−1 − 1

2β
z∗2 + ln Gn−2(|z∗ + B|) (20)

that defines z∗. We note that the Hessian of f (z) in the maximum does not appear in (20),
since its contribution becomes vanishingly small in the thermodynamic limit, N → ∞. An
analogous argument can be used for possible degeneracies of the absolute maximum (see
a few lines below). The study of (19), the computation of the magnetization and of the
equation of state are presented, in some detail, in appendix C; here we only show the results.
Equation (19) can have more than one solution, depending on the value of β and B = |B|.
In any case, the relevant stationary point z∗ is such that its modulus z∗ satisfies the self-
consistency equation:

z∗ = βgn−2(z
∗ + B) (21)

which is a generalization of the Curie–Weiss equation found in the mean-field solution
of the Ising model. In fact, gn(x) has the same qualitative features of tanh(x) (see
appendix B). To complete the solution, we must add the following specifications. When
B > 0 (i.e., h = |h| > 0), for which (21) has a positive solution z∗ > 0, z∗ is parallel to
h. When h = 0, we have to distinguish between β > βc = n and β � βc: for inverse
temperatures not greater than the critical value βc the only solution of (21) for h = 0 is z∗ = 0;
instead, for β > βc there is also a positive solution, and this is the relevant one. In this last
case, the direction of z∗ (if n > 1) remains undetermined; in other words, the stationary
point is infinitely degenerate, or doubly degenerate if n = 1. Therefore, to be more precise,
one should then perform in (11), when β > βc and h = 0, an integration over the angular
coordinates of z (or a sum over the two directions if n = 1) before applying the saddle point.
This would give in (20) a further factor (ln �n)/N , which does not contribute to F in the
thermodynamic limit.
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Denoting with 〈·〉 = (1/Z)
∫

dN�(·)e−βH the usual canonical average, the magnetization
is given by

M ≡ 1

N

〈
N∑

i=1

Si

〉
= 1

Nβ

∂

∂h
ln Z = z∗

β
. (22)

Since in the case h = 0 and β > βc the direction of z∗ is not determined, because of degeneracy,
the actual direction of M in a real system is determined by the boundary conditions, and there
is a spontaneous symmetry breaking. The magnetization modulus M = |M | becomes zero at
β = βc and remains zero for β < βc; at βc there is a second-order phase transition.

Finally, the equation of state, relating the specific (potential) energy U = 〈H 〉/N to the
temperature (through the magnetization modulus M), is given by

U = − lim
N→∞

1

N

∂

∂β
ln Z = 1

2
(1 − M2) − hM. (23)

If we had considered also the kinetic energy, then in (20) we would have had an additional
term 1

2 (n − 1) ln(2π/β), and consequently in (23) a further term (n − 1)/(2β) would have
appeared, making in that case U the total specific energy. For β � βc the specific potential
energy remains constant, equal to 1

2 (since M remains equal to zero), and only the specific
kinetic energy increases.

The phase space volume at the disposition of the rotators increases with n, and this is
reflected in the critical temperature Tc = 1

n
decreasing with n; apart from this quantitative

difference, the overall behaviour is the same for all values of n.

4.2. The general case 0 � α < d

The integral (18), analogous to (11) of the α = 0 case, can also be computed with the saddle
point method. However, here the justification requires some care, since together with N also
the number of integration variables becomes very large. We postpone this point to the next
subsection, and for the moment we consider the stationary points of the exponent of (18). We
do not put in evidence a factor N, since this is not necessary for the search for the stationary
points. They are given, if we call f ({ziµ}) the exponent, by the solutions of the system of Nn

equations:

∂f

∂ziµ

= −1

2

N∑
j=1

(R−1)ij zjµ + gn−2(|zi + B|)ziµ + Bµ

|zi + B| = 0

µ = 1, . . . , n i = 1, . . . , N. (24)

The value of the integral in (18) will be determined by the absolute maximum of f ({ziµ});
therefore, in the thermodynamic limit we will obtain for the specific free energy

−βF = lim
N→∞

1

N
ln Z = −β

2
+ ln �n−1 − n ln 2

+ lim
N→∞

1

N

[
max
{ziµ}

f − n

2
ln det R − 1

2
ln det

(
−1

2
H0

)]
(25)

where H0 is the Hessian of f computed in the absolute maximum (see below how it has to be
interpreted in the case of degeneracy of this maximum). The essential difference with respect
to the expression of the partition function of the α = 0 case, equation (20), is represented by
the terms containing det H0 and det R. There it was not necessary to consider the Hessian of
the exponent; the reason is that (11) is n dimensional, and the contribution of the Hessian to
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the specific free energy vanishes in the thermodynamic limit. The system (24) is equivalent
to the following:

ziµ = 2
N∑

j=1

Rijgn−2(|zj + B|)zjµ + Bµ

|zj + B| µ = 1, . . . , n i = 1, . . . , N. (26)

We will prove, in section 4.2.1, that the relevant stationary point is homogeneous on the lattice,
with ziµ not depending on i; in fact, we will prove that if there exist other solutions of (26),
non-homogeneous on the lattice and maxima of f ({ziµ}), they are only local maxima. Let us
then consider homogeneous solutions of (26), which in this case reduce to the system

zµ = βgn−2(|z + B|)zµ + Bµ

|z + B| µ = 1, . . . , n (27)

which is identical to (19). In obtaining this expression we have used the property that
2
∑

j Rij = β for each i, obtainable from the definition of the matrix Rij = (β/2Ñ)Jij and
from (A.5). Thus we have the same solution z∗ of the α = 0 case. As in that case, the
degeneracy of the stationary point is reflected in the existence of n − 1 eigenvalues of the
Hessian matrix equal to zero; however, we noted before that in this case an integration over
the region of degeneracy is implied before the application of the saddle point. This integration,
which gives a further contribution (ln �n)/N in (25), vanishing in the thermodynamic limit,
is performed exactly over the directions corresponding to the eigenvalues equal to zero; as a
consequence, these eigenvalues of − 1

2H0 must not be taken into account in the term with H0

in (25).
We have to compute the terms in square brackets in (25). We first write down an

expression for max f . The maximum z∗ is homogeneous, then we have to know
∑

ij (R
−1)ij .

Since
∑

j Rij = β/2 for each i, then
∑

j (R
−1)ij = 2/β for each i. In fact, the first expression

shows that a homogeneous vector is an eigenvector of R with eigenvalue β/2; therefore, the
same vector is an eigenvector of R−1 with eigenvalue 2/β, which gives the second expression.
It follows immediately that

max
{ziµ}

f = N

[
− 1

2β
z∗2 + ln Gn−2(|z∗ + B|)

]
. (28)

with z∗ defined in (20). We now turn to ln det
(− 1

2H0
)
. Using the results of the stability

analysis performed in appendix C, we can write the expression below for the eigenvalues of
− 1

2H0, valid both when the maximum is at a positive value of z∗ (i.e., when B > 0 and when
B = 0 but β > βc = n) and when it is at z∗ = 0. It is easily seen (always considering, for
convenience, B along the first axis, and z∗ along the first axis also when B = 0 and β > βc)
that the eigenvalues are given by

1
4R−1

i − p1(z
∗)

(29)
1
4R−1

i − p2(z
∗) n − 1 times

for i = 1, . . . , N . Here, when z∗ > 0, p1(z
∗) ≡ 1

2g′
n−2(z

∗ +B) and p2(z
∗) ≡ z∗/[2β(z∗ +B)];

while, when z∗ = 0, p1(z
∗) = p2(z

∗) = 1/(2n). Therefore we have

det

(
−1

2
H0

)
=

N∏
i=1

[(
1

4
R−1

i − p1(z
∗)
)(

1

4
R−1

i − p2(z
∗)
)n−1

]

=
(

1

4

)Nn

(det R)−n

N∏
i=1

[(1 − 4Rip1(z
∗))(1 − 4Rip2(z

∗))n−1] (30)
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where, as noted before, we have to disregard the n − 1 zero eigenvalues, present when B = 0
and β > βc. We then obtain

−1

2
ln det

(
−1

2
H0

)
= Nn ln 2 +

n

2
ln det R

+
N∑

i=1

[ln(1 − 4Rip1(z
∗)) + (n − 1) ln(1 − 4Rip2(z

∗))]. (31)

We will show in a moment that the last sum does not contribute to (25); then, using (28) and
(31) in (25), we have the following expression for the free energy:

− βF = −β

2
+ ln �n−1 − 1

2β
z∗2 + ln Gn−2

(|z∗ + B|) (32)

identical to (20). We then obtain the same magnetization z∗/β (see (22)), and the same
equation of state (23) as for α = 0. These last two expressions are computed explicitly in
appendix C (see (C.15) and (C.16)). Thus, we still have a second-order phase transition at
β = βc, where M becomes 0. Of course we can make the same comments concerning the
addition of the kinetic part.

This concludes, apart from the remaining technical points treated below, our proof of the
universality of all the models, for each n, when α < d . We repeat that the difference, when n
varies, is in the value of the critical temperature Tc = 1

n
, but the overall behaviour is the same

for all values of n.
We are left with two points: the proof that the sum in (31) does not contribute to (25), and

the justification of the saddle point method. The next subsection is dedicated to the second
point; here we treat the first. From (A.7) we have

β

2

ε

Ñ
� Ri � β

2
(33)

with the important specification that only a vanishing fraction of these eigenvalues remains
finite in the thermodynamic limit. We can therefore write

lim
N→∞

1

N

N∑
i=1

[ln(1 − 4Rip1(z
∗)) + (n − 1) ln(1 − 4Rip2(z

∗))]

= lim
N→∞

{
− 1

N

∑′
[4Ri(p1(z

∗) + (n − 1)p2(z
∗))]

+
1

N

∑′′
[ln(1 − 4Rip1(z

∗)) + (n − 1) ln(1 − 4Rip2(z
∗))]

}
(34)

where the first sum is on the vanishing eigenvalues, and the second on the others; in the first
we have substituted the logarithm with its first-order approximation. We also point out that,
following our stability analysis, the arguments of the logarithms in (34) are between 0 and 1.
We can indicate with η the fraction of eigenvalues present in the second sum; we also denote
with R′

max and R′′
max the largest eigenvalues in the first and second sums, respectively; then the

above expression is bounded in modulus from above by

4n(1 − η)R′
max + nη| ln(1 − 4p∗R′′

max)|. (35)

where p∗ is the largest between p1(z
∗) and p2(z

∗). In the thermodynamic limit this expression
goes to zero, since both R′

max and η go to zero. Therefore, the sum in (31) does not contribute
to the specific free energy (25).
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4.2.1. Possible non-homogeneous solutions. Now we consider other possible solutions of
(26), non-homogeneous on the lattice. We do not prove if they exist and if, in that case, they
are maxima; rather, we prove that, if they exist and are maxima, they are local, i.e., the value
of f at those points is smaller than that for our homogeneous solution. Incidentally, we note
that if a non-homogeneous stationary point exists, then, because of translational invariance,
all the configurations obtained from that by any translation, are also stationary points with
the same value. Let us begin by rewriting the stationary point equations (26) in another form,
posing ziµ + Bµ ≡ wiµ:

wiµ = 2
N∑

j=1

Rijgn−2(|wj |) wjµ

|wj | + Bµ µ = 1, . . . , n i = 1, . . . , N. (36)

From this we can derive an equality that is verified for our homogeneous solution. Taking,
as before and without loss of generality, Bµ = Bδµ1, and the relevant homogeneous solution
with wiµ = wδµ1 (i.e., wiµ = 0 for µ �= 1 and wi1 = w � 0), we obtain

w = βgn−2(w) + B (37)

where again we have used 2
∑

j Rij = β for each i. This is valid also for B = 0. Let us now
consider another possible solution of (36) for which not all the |wi| are equal. In this case we
take the first axis in the direction of the wi with the largest modulus (that we denote with wl),
and from (36) we have

wl1 = |wl| = 2
N∑

j=1

Rljgn−2(|wj |) wj1

|wj | + B1 � 2
N∑

j=1

Rljgn−2(|wj |) + B

< 2
N∑

j=1

Rljgn−2(|wl|) + B = βgn−2(|wl|) + B (38)

where we have used the monotonicity of gn−2(x) and that B1 � B. Therefore, a non-
homogeneous solution with different moduli for the wi is such that all these moduli are
smaller than that of the homogeneous solution satisfying (37). In fact, the properties of the
functions g (see also figure 1) imply that |wl| in (38) is smaller than w satisfying (37). The
same is true for a solution with all equal moduli but different directions; in this case, in (38)
the first inequality becomes strict and the second becomes an equality. In particular, if β < βc

and B = 0, when the solution of (37) is w = 0, there can be no other solution of (36). It is
now sufficient to see that the exponent f in (18) is an increasing function of the moduli |wi|,
and this will prove that all non-homogeneous solutions of (26) are at most local maxima. It
is not difficult to show, using (36), that, as a function of the wi , f in the stationary points is
given by

f =
N∑

i=1

[
−1

2
gn−2(|wi |)|wi| +

1

2
gn−2(|wi |)wi · B

|wi | + ln Gn−2(|wi |)
]

. (39)

Posing wi = xisi , with xi ≡ |wi| and si unitary vectors, (39) becomes

f =
N∑

i=1

[
−1

2
gn−2(xi)xi +

1

2
gn−2(xi)si ·B + ln Gn−2(xi)

]
. (40)

The differentiation with respect to xi gives, as is easily seen

∂f

∂xi

= 1

2
xi

(
gn−2(xi)

xi

− g′
n−2(xi)

)
+

1

2
g′

n−2(xi)si · B. (41)
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The first term is always positive, according to lemma 4 of appendix B, and also g′
n−2(xi) is

always positive. This proves that for the homogeneous solution, satisfying (37) and for which
si · B = B for each i, f has the largest value.

4.3. Justification of the saddle point

In the integral (18) the number of integration variables itself increases with N. The value of the
maximum of the exponent diverges with N (this is seen in (28)); but the use of the saddle point
gives a proper evaluation of the integral if also the curvatures in all directions diverge with
N, i.e., if all the eigenvalues of − 1

2H0 diverge with N. We now show that this is not exactly
verified, but since what we are interested in is the evaluation of the specific free energy F (see
(25) and (32)), we also show that nevertheless the saddle point method is still justified.

The eigenvalues of − 1
2 H0 are given by (29). The functions p1(z

∗) and p2(z
∗) are finite,

and for 1
4R−1

i we can look at expression (C.10). According to our analysis in appendix A,
among the values of 1

4R−1
i only a fraction, vanishingly small in the thermodynamic limit, does

not diverge with N. Along the directions corresponding to those eigenvalues the integral should
be computed explicitly, reserving the saddle point method to the other directions; however, we
show that the error introduced using altogether the saddle point vanishes in the computation
of F.

Let us call collectively δl the eigenvalues of − 1
2H0, where l runs from 1 to P ≡ nN , and

indicate with v1, . . . , vP the integration variables in (18); then, the fact that the integral in that
expression is evaluated with the saddle point is equivalent to the following replacement:∫

dP v ef −→ exp(max f )

∫
dP v exp

[
−

P∑
l=1

δlv
2
l

]
. (42)

For the vl for which δl does not diverge with N this replacement is not a good approximation,
and we should more correctly write

exp(max f )

∫
dP v exp


−

P̄∑
l=1

δlv
2
l − u(vP̄+1, . . . , vP )


 (43)

with u > 0 always, except that u = 0 when vP̄+1 = · · · = vP = 0, and where δP̄+1, . . . , δP

(with P̄ < P ) are the δl that do not diverge with N. The previous expression can also be written
as

exp(max f )

∫
dP v exp

(
−

P∑
l=1

δlv
2
l

) ∫
dvP̄+1 · · · dvP exp [−u(vP̄+1, . . . , vP )]∫

dvP̄+1 · · · dvP exp
[
−∑P

l=P̄ +1 δlv
2
l

] . (44)

We are interested in the limit, when N → ∞, of 1
N

times the logarithm of this expression.
We have already seen that, when N →∞, (P − P̄ )/P goes to zero. This implies that the
contribution of the last fraction in (44) to the evaluation of the free energy F vanishes in the
thermodynamic limit, and this is equivalent to using the saddle point expression (42).

5. Microcanonical solution

We briefly treat the point of the microcanonical solution of our system. The equivalence
of different ensembles is a problem of general character, and here we only show that for
our system the canonical and microcanonical ensembles are equivalent. Our argument, up
to equation (51), is very short and simple. However, the discussion that we make after that
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equation, has led us to give a more formal proof in the short appendix D, based on the results of
[9], which concerns possible ensemble inequivalence in systems with long-range interactions.

For a generic system, indicating collectively with � the coordinates of its phase space, its
canonical partition function can be written as

Z(β) =
∫

d� e−βH(�) =
∫ ∞

0
dE ω(E) e−βE =

∫ ∞

0
dE exp [−βE + ln ω(E)] (45)

where ω(E) is the microcanonical density of states:

ω(E) =
∫

d� δ (H(�) − E) . (46)

In (45) we have supposed that the Hamiltonian is bounded from below at 0 (as in our case)
without loss of generality; the dependence on the number N of particles is not explicitly written.
Introducing the specific energy U = E/N and using the definition of the microcanonical
specific entropy in the thermodynamic limit

S(U) = lim
N→∞

1

N
ln ω(E) (47)

then, from the last expression in (45) we see that the canonical partition function can be
computed, in the thermodynamic limit, by the saddle point method, and the specific free
energy is therefore given by

−βF(β) = lim
N→∞

1

N
ln Z(β) = max

U
[−βU + S(U)] . (48)

If S(U) is concave, i.e., if (d2S)/(dU 2) < 0, this relation defines a single value of U for each
β,Umc(β), given by (dS)/(dU)|U=Umc

= β, and we can write

−βF(β) = −βUmc(β) + S(Umc(β)). (49)

On the other hand, if S(U) has a convexity region, as in the presence of first-order phase
transitions, then it can be easily deduced from (48) that the temperature derivative of F has a
discontinuity. In our system we have only a second-order transition, and in fact we have no
discontinuity in (∂F )/(∂β); therefore S(U) is concave and (49) holds (of course this is true
whether or not we consider the trivial kinetic energy contribution to F). It is now easy to show
the equivalence of the two ensembles. In fact the entropy Sc(β) computed from the canonical
ensemble is obtained from (49) as

Sc(β) = −∂F

∂T
= β2 ∂F

∂β
= β2 ∂

∂β

[
Umc(β) − 1

β
S(Umc(β))

]

= β2

[
dUmc

dβ
+

1

β2
S(Umc(β)) − 1

β

dS

dU

∣∣∣∣
U=Umc

· dUmc

dβ

]
= S(Umc(β)) (50)

using that (dS)/(dU)|U=Umc
= β. Also for the canonical energy U(β) we obtain

U(β) = ∂

∂β
(βF(β)) = ∂

∂β
[βUmc(β) − S(Umc(β))]

= Umc(β) + β
dUmc

dβ
− dS

dU

∣∣∣∣
U=Umc

· dUmc

dβ
= Umc(β). (51)

As a matter of fact, without computing explicitly the microcanonical entropy S(U), we
cannot exclude a priori that there are saddle points with unstable directions with respect to
parameters other than the energy, e.g., the local magnetizations. In appendix D we show that,
if this is the case, these saddle points are related to local and not absolute maxima of the
microcanonical entropy; a mathematical problem similar to that of the extrema defined by (24)
and considered in subsection 4.2.1.
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6. Discussion and conclusions

In this paper we have considered the problem of computing the partition function of lattice
magnetic models with long-range couplings. We have studied a class of models in which the
decay of the interaction with distance is gauged by the exponent α, smaller than the spatial
dimension d in which the lattice is embedded. From the technical point of view, our study
has required several steps: (i) the analysis of the spectrum of the matrix R for a consistent
application of the well-known Gaussian identity sometimes called the Hubbard–Stratonovich
transform (see (9) and (16)); (ii) the analysis of a class of functions related to the modified
Bessel functions of the first kind, and characterized by the index n, the dimension of the spins;
(iii) the application of the saddle point method to an integral with a diverging number of
integration variables, which had to be justified; (iv) the proof that possible stationary points,
if any, in the general case (in the strict sense 0 < α < d), of the exponent in (18) can be at
most only local maxima, and are therefore irrelevant in the thermodynamic limit.

In our computations, we have not explicitly considered the case α = d and we have
restricted the long-range couplings to a power form. However, it is not difficult to argue that
also for a power decay with α = d and for a more generic form of Jij with a long-range
character (i.e.,

∑N
j=1 |Jij | diverging with N) we would have obtained the same results. In fact,

the basic points for our computations are: firstly, the divergence with N of the quantity S in
(A.4) and consequently of Ñ in (A.5), and secondly the fact that only a vanishing fraction, in
the thermodynamic limit, of the eigenvalues λk diverges, with the consequence, given the first
point, that only a vanishing fraction of λk/Ñ (see (A.7)) remains finite. When α = d all these
points would remain; the behaviour of the quantity S in (A.4) for large N would then be given
by ln N . Also for a generic Jij all these points would still be true, even if the divergence law of
S with N could possibly be difficult to write explicitly; in conclusion, we have found an entire
class of lattice spin models with a universal thermodynamic behaviour. Let us remark that we
have also shown the equivalence, for these models, of the microcanonical and the canonical
ensembles, in spite of the lack of additivity.

Let us point out that boundary conditions can have relevant consequences in models with
long-range interactions. We have shown that if periodic boundary conditions are imposed on
our model, the solutions of the saddle point equations corresponding to the global minimum
of the free energy are homogeneous on the lattice; whereas possible inhomogeneous solutions
correspond to local minima. In contrast, if boundary conditions are free, the minimum
solutions are non-homogeneous; for each α we have checked that it is possible to compute
magnetization profiles similar to those computed for the 1D Ising model corresponding to the
particular case d = 1 and n = 1 [30].

The results of this paper on lattice systems can be helpful for the thermodynamics
of continuous long-range systems; it should be stressed, however, that, without Kac’s
prescription, not only additivity, but also extensivity is violated, and this could imply ensemble
inequivalence. The microcanonical ensemble would then be the natural framework for the
study of those cases.
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Appendix A. Interaction matrix (spectral properties)

The nonrescaled couplings Jij are the entries of a real, symmetric N×N matrix. It is necessary
that all the eigenvalues are positive, since we make use of the Gaussian transformation (9).
We show here how we can use the freedom on the value of Jii for this purpose.

Let us denote the position of lattice site i by ri . We stress that in this appendix boldface
characters denote d-dimensional vectors of the lattice space or of its dual; in the rest of
the paper they denote n-dimensional vectors related to the dimensionality of the spins. The
function rij is the distance between the point ri and the nearest image of rj , and then it is
invariant under translations. The same is true for Jij , once we use the freedom on the values
of Jii taking all these diagonal elements equal to the same constant b. Therefore, if we let
rij = ri − r

(i)

j , where r
(i)

j is the image of rj which is nearest to ri , denoting rij = |rij | and
introducing the notation Jij = J (rij ), we have

J (rij ) =
{
b if rij = 0
r−α
ij otherwise.

(A.1)

Following these definitions, the eigenvalues of the matrix J are obtained through the d-
dimensional Fourier transform

λk =
∑

r

J (r) exp(−ik · r) =
∑

r

r−α exp(−ik · r) (A.2)

where the sum is on all the lattice points and k denotes any of the N reciprocal lattice vectors
contained in the first Brillouin zone. The reality of the eigenvalues follows from (A.2) and the
properties of J (rij ). It is also evident that λ0 is the largest eigenvalue. If we isolate the r = 0
term we have

λk = b +
∑
r �=0

r−α exp(−ik · r) (A.3)

which shows that the whole spectrum is linearly translated by b. For k = 0 the remaining sum
corresponds to the sum S defined in (5). It is clear that for α > d all the eigenvalues are finite
in the thermodynamic limit. We now restrict to the case α < d . The large N behaviour of S
can be estimated by shifting S to an integral

S =
∑
r �=0

r−α ∼
∫ N

1
d

1
dr rd−1−α ∼ N1− α

d . (A.4)

The rescaling (3) is realized with

Ñ = λ0 = b + S =
N∑

j=1

Jij (A.5)

which of course means Ñ ∼ S, since b is a finite quantity; as noted before, the last expression
in (A.5) does not depend on i. It is also possible to estimate the behaviour of λk for k �= 0 for
large N. It is easy to see that the sum in (A.3), if k = |k| is different from 0, remains finite in
the thermodynamic limit, and the behaviour in k, again shifting to an integral, can be found to
be ∑

r �=0

r−α exp(−ik · r) ∼ 1

kd−α
. (A.6)

This expression does not consider the sign of the left-hand side. The maximum value of k is of
the order of the inverse of the lattice spacing, and in the thermodynamic limit the distribution
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of the N reciprocal lattice vectors k tends to fill uniformly, in the dual space, a d-dimensional
sphere with a radius equal to this maximum value. Therefore, in this limit the possible values
of k are distributed according to kd−1. It follows that in the thermodynamic limit only a
vanishing fraction of the eigenvalues diverges (and at most as Ñ , like λ0), also in the less
favourable case (concerning the distribution of the values of k near 0), when d = 1. It is also
evident that negative eigenvalues are possible only for finite values of k, and that the least
eigenvalue, in the case b = 0 in (A.2), is of order 1 in modulus. Thus, the whole spectrum
can be made positive by properly choosing the value of b in (A.2).

We can now estimate the behaviour of the rescaled eigenvalues pertaining to the interaction
(3). The eigenvalues of the rescaled interaction matrix are related to the λk, being given by
λk/Ñ . If we choose a value of b such that the least eigenvalue λk has a positive value ε, then
for the eigenvalues of the rescaled interaction the following relation holds:

0 <
ε

Ñ
� λk

Ñ
� 1. (A.7)

According to what has been found above, only a vanishing fraction will remain finite in the
thermodynamic limit; this is an important fact in our calculations.

Finally, we note that when α = 0 the eigenvalues can be calculated from (A.3):

λk = b +
∑
r �=0

exp(−ik · r) = b − 1 + Nδk0. (A.8)

There are N − 1 eigenvalues equal to b − 1 and one eigenvalue equal to b + N − 1 = Ñ . In
this extreme case all the rescaled eigenvalues vanish in the thermodynamic limit except the
single largest one equal to 1.

Appendix B. The functions Gp(x) and gp(x)

In (10) we have, for each site i, an integral of the form∫
d� eS · z (B.1)

extended on the surface of the unit sphere in dimension n � 2, where the unit vector S lies.
For n = 1 the integral is substituted by the sum over S = ±1; in that case also z has a single
component z, (B.1) is given by 2 cosh(z), and we do not need further analysis. For n � 2 we
can choose the axes of the unit sphere such that z lies along one of them; besides, we can
introduce polar coordinates in n dimensions, taking as the polar axis the one along z. Then,
if z = |z|, it is easy to show that (B.1) becomes∫

d� eS·z = �n−1

∫ π

0
dθ sinn−2 θ exp(z cos θ) (B.2)

where θ is the polar angle, while �n is the area of the unit sphere in n dimensions (with
�1 = 2); it can be expressed in terms of the gamma function as �n = 2πn/2/�(n/2). This
last factor is not considered further, and for the integral in (B.2) we introduce the following
notation:

Gp(x) =
∫ π

0
dθ sinp θ exp(x cos θ) = 2

∫ π/2

0
dθ sinp θ cosh(x cos θ) (B.3)

where the parameter p is related to the dimension n � 2 of the spin vector by p = n − 2, and
therefore p takes non-negative integer values. If n = 1 it is understood that G−1(x) = cosh(x)

and �0 = 2. The other functions of interest are the derivative of Gp(x):

G′
p(x) =

∫ π

0
dθ cos θ sinp θ exp(x cos θ) = 2

∫ π/2

0
dθ cos θ sinp θ sinh(x cos θ) (B.4)
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and the logarithmic derivative

gp(x) = d

dx
ln Gp(x) = G′

p(x)

Gp(x)
=

∫ π

0 dθ cos θ sinp θ exp(x cos θ)∫ π

0 dθ sinp θ exp(x cos θ)

=
∫ π/2

0 dθ cos θ sinp θ sinh(x cos θ)∫ π/2
0 dθ sinp θ cosh(x cos θ)

. (B.5)

For n = 1 (i.e., p = −1) they are substituted by sinh(x) and by tanh(x), respectively. For
the analysis of the self-consistency equation (21) or (27) we use the concavity properties of
gp(x). To find them (our lemma 5), we need several other properties (also used throughout
the text), that we now show.

We first note that the functions inside the integrals in (B.3), (B.4) and (B.5) are integrable
for any p greater than −1, and besides it can be easily proved that the limit for p → −1 of
(B.5) is exactly tanh(x). Therefore, all the properties that we will show for Gp(x),G′

p(x)

and gp(x) are valid for any p � −1 (if necessary, for p = −1 the explicit simple hyperbolic
functions can be invoked).

The properties of symmetry with respect to x inversion and monotonicity are almost
self-evident. From (B.3) it is immediately seen that Gp(x) is even and is monotonically
increasing for x > 0, while (B.4) clearly shows that G′

p(x) is odd, positive for x > 0 and
negative for x < 0, and is monotonically increasing. As a consequence, we have that gp(x) is
odd, positive for x > 0 and negative for x < 0.

To proceed with the properties of gp(x), we use the first-order differential equation
satisfied by it, and its several first derivatives in x = 0. We write these expressions here, and
we prove them at the end of the appendix. The function gp(x) satisfies

g′
p(x) = 1 − p + 1

x
gp(x) − g2

p(x) (B.6)

supplied with the initial condition gp(0) = 0. Besides, while the even derivatives of gp(x)

vanish for x = 0 (gp(x) is odd), we have

g′
p(0) = 1

p + 2
g′′′

p (0) = − 6

(p + 4)(p + 2)2
. (B.7)

We can now prove the following.

Lemma 1. g′
p(x), which is even, is positive.

Proof. By differentiating (B.6), we get the following equation for g′′
p(x):

g′′
p(x) = p + 1

x2
gp(x) − p + 1

x
g′

p(x) − 2gp(x)g′
p(x). (B.8)

Since g′
p(0) = 1/(p + 2) > 0, if g′

p(x) intersects the value 0, it must intersect at least once
with g′′

p non-positive for x > 0 and non-negative for x < 0. But from (B.8) we get for g′
p = 0

that g′′
p = (p + 1)gp/x2, which is positive for finite x > 0 and negative for finite x < 0. Then,

g′
p(x) > 0 for all x. �

Lemma 2. gp(x) is, in modulus, smaller than 1, and it tends to ±1 for x → ±∞.

Proof. gp(x) starts at x = 0 with the value gp(0) = 0. Therefore, if, for x > 0, it intersects
the value gp = 1, it must intersect at least once with non-negative derivative. But from (B.6)
we get for gp = 1 that g′

p = −(p + 1)/x, which is negative for finite x > 0. Then, gp(x)

remains, for x > 0, between 0 and 1. To proceed, we restrict to positive x; the proof for
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negative x follows from the fact that gp(x) is odd. Since g′
p(x) > 0 and gp(x) < 1 for finite

x, gp(x) must have an asymptote, and for x → ∞ g′
p(x) must tend to 0. In that limit (B.6)

becomes 0 = 1 − g2
p. Therefore, for x → ∞ gp(x) tends to 1. �

Lemma 3. gp(x)/x, which is even and positive, has a derivative which is negative for x > 0
and positive for x < 0.

Proof. We define hp(x) = gp(x)/x. From (B.6) it is easy to derive the differential equation
satisfied by hp(x):

h′
p(x) = 1

x
− p + 2

x
hp(x) − xh2

p(x). (B.9)

Following what has already been proved, hp(x) is even and positive, and we have

hp(0) = 1

p + 2
h′

p(0) = 0 h′′
p(0) = − 2

(p + 4)(p + 2)2
. (B.10)

By differentiating (B.9) we have the following equation:

h′′
p(x) = − 1

x2
+

p + 2

x2
hp(x) − p + 2

x
h′

p(x) − h2
p(x) − 2xhp(x)h′

p(x). (B.11)

From (B.10) we see that, for x positive and sufficiently small, h′
p(x) is negative; therefore,

if for larger x h′
p(x) becomes equal to 0, it must become equal to 0 with a non-negative

h′′
p(x), and with hp(x) smaller than 1/(p + 2). But from (B.11) we have for h′

p(x) = 0 that
h′′

p(x) = −h2
p(x) − [

1 − (p + 2)hp(x)
]
/x2, which is negative. Then, for x > 0 h′

p(x) is
always negative, and it can also be easily seen that it tends to zero, together with hp(x), for
x → ∞. The proof for negative x follows from the fact that hp(x) is even. �

Lemma 4. gp(x)/x − g′
p(x), which is even, is positive.

Proof. This is a simple consequence of the previous lemma, once we note that h′
p(x) =

g′
p(x)/x − gp(x)/x2 = [g′

p(x) − gp(x)/x]/x. �

Lemma 5. g′′
p(x), which is odd, is negative for x > 0 and positive for x < 0.

Proof. By differentiating (B.8), we get the following equation for g′′′
p (x):

g′′′
p (x) = −2

p + 1

x3
gp(x) + 2

p + 1

x2
g′

p(x) − p + 1

x
g′′

p(x) − 2g′2
p (x) − 2gp(x)g′′

p(x). (B.12)

The positive function g′
p(x) starts at x = 0 with the value 1/(p + 2), and for sufficiently

small x g′′
p(x) is negative (see (B.7)); therefore, if for larger x g′′

p(x) becomes equal to 0, it
must become equal to 0 with a non-negative g′′′

p (x). But from (B.12) we have for g′′
p(x) = 0

that g′′′
p (x) = −2g′2

p (x) − 2(p + 1)
[
gp(x)/x − g′

p(x)
]
/x2, which is negative, using lemma 4.

Thus, for x > 0, g′′
p(x) is negative. The proof for negative x follows from the fact that g′′

p(x)

is odd. �

We end by proving (B.7) and (B.6). Since Gp(x) is even, the odd derivatives vanish for
x = 0, while from the expression

G(m)
p (x) = dm

dxm
Gp(x) =

∫ π

0
dθ cosm θ sinp θ exp(x cos θ) (B.13)

integrations by parts, after posing x = 0, give, for the second and fourth derivatives in x = 0,
the expressions

G′′
p(0) = 1

p + 2
Gp(0) G(4)

p (0) = 3

(p + 4)(p + 2)
Gp(0). (B.14)
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From this and from the definition of gp(x) we easily get (B.7). To derive (B.6) we first find the
second-order differential equation satisfied by Gp(x). An integration by parts in (B.4) gives

G′
p(x) = x

p + 1
Gp+2(x). (B.15)

From this and from the relation G′′
p(x) = Gp(x) − Gp+2(x), obtainable from (B.13) posing

cos2 θ = 1 − sin2 θ , we have

x2G′′
p(x) + (p + 1)xG′

p(x) − x2Gp(x) = 0. (B.16)

At the same time, the definition of gp(x) gives

g′
p(x) = G′′

p(x)

Gp(x)
−
(

G′
p(x)

Gp(x)

)2

= G′′
p(x)

Gp(x)
− g2

p(x). (B.17)

Substituting G′′
p(x) as a function of G′

p(x) and Gp(x) from (B.16), we get (B.6).
Just for completeness, we mention that from (B.16) it is easy to derive the equation

satisfied by Wp(x) ≡ x
p

2 Gp(x):

x2W ′′
p (x) + xW ′

p(x) −
[
x2 +

(p

2

)2
]

Wp(x) = 0 (B.18)

which is the modified Bessel equation with parameter p

2 . Knowing also the limiting properties,
for x → 0, of Gp(x), it can be concluded that Wp(x) is proportional to the modified Bessel
function of first kind of order p

2 , I p

2
(x).

Appendix C. Details of the solution

We give some details of the solution. For the α = 0 case the stationary points are given by (19);
however, we proved in section 4.2.1 that in the general case 0 � α < d the relevant solution
is homogeneous, and therefore we have to solve equation (27), identical to (19). Thus, let us
consider this last equation and begin with the case h > 0 (we recall that B = βh). Without
loss of generality, we can take the magnetic field h in the positive direction of the first axis,
i.e., h1 = h and hµ = 0 for µ �= 1. Then, from (19) we have, for µ �= 1:

zµ = βgn−2(|z + B|) zµ

|z + B| µ = 2, . . . , n. (C.1)

The possible solutions of these n− 1 equations are: zµ = 0 for each µ = 2, . . . , n, or, if some
zµ is not zero, such that βgn−2(|z + B|)/(|z + B|) = 1. But in the second case the equation
for µ = 1 would become z1 = z1 + B, which is not acceptable since B > 0. Thus, zµ = 0 for
µ > 1, and the remaining equation for µ = 1 becomes

z1 = βgn−2(|z1 + B|) z1 + B

|z1 + B| . (C.2)

From the symmetry properties of gn(x), described in the previous appendix, this equation is
equivalent to

z1 = βgn−2(z1 + B). (C.3)

This equation can be solved graphically. We use the concavity of the functions gn(x), that we
have proved, and for a visual aid we refer to figure 1. In particular, since the maximum of
the positive function g′

n−2(x) is for x = 0 and is equal to 1
n
, and the odd function g′′

n−2(x) is
negative for x > 0, we have that (C.3) always admits a single positive solution for z1, while,
if β > βc = n, it can also have, for sufficiently small h, two other negative solutions. From
the stability analysis we will see that the relevant solution is the positive one.
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z 

(a) 

(b) 

Figure 1. In both panels the curved lines represent the qualitative behaviour, for any n and for a
range of z about 0, of βgn(z +B) for β < βc (solid line) and for β > βc (dashed line). The straight
line is the bisectrix. (a) B = 0: when β > βc the relevant solution for the modulus z in (C.5) is
the positive intersection, and not z = 0; (b) B > 0: the relevant solution for z1 in (C.3) is always
the intersection with z1 > 0, even when β > βc .

We now turn to the case h = 0. The stationary point equations become

∂f

∂zµ

= − 1

β
zµ + gn−2(z)

zµ

z
= 0 µ = 1, 2, . . . , n (C.4)

with z = |z|. It is readily seen that these equations determine only the modulus z. In fact,
posing zµ = zsµ, we see that the unit vector s, giving the direction of z, is left free, and the
equation for z is

z = βgn−2(z) (C.5)

which is of the same form as (C.3). Again, from the properties of gn(x) and looking at figure 1,
we have that for β � βc = n the only solution is z = 0, while for β > βc we also have a
positive solution. The stability analysis will show that in this last case the relevant solution
is the positive one. To summarize, in both cases, with or without magnetic field, the relevant
stationary point z∗ is such that its modulus z∗ satisfies the self-consistency equation (21), with
the further characteristics specified soon after it.

For the stability analysis we have to consider all possible displacements from the stationary
point. Therefore for the general case we must study the full Hessian, given by the Nn × Nn

matrix of the second derivatives of f ({ziµ}) (the exponent of equation (18)):

∂2f

∂ziµ∂zjν

= −1

2
(R−1)ij δµν + δij

[
g′

n−2(|zi + B|) (ziµ + Bµ)(ziν + Bν)

|zi + B|2

− gn−2(|zi + B|) (ziµ + Bµ)(ziν + Bν)

|zi + B|3 + gn−2(|zi + B|) δµν

|zi + B|
]

(C.6)
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to see if it is negative definite. We then study the general case, and afterwards we show how
the simpler results for α = 0, where the exponent in (11) depends only on n variables, can be
deduced.

Let us take the homogeneous solutions just considered, and begin with the case with the
vector h in the positive direction of the first axis. We have found that the corresponding
solutions of (27) have zµ = 0 for µ �= 1. For such z (and for Bµ = Bδµ1), the second
derivatives vanish if µ �= ν, while for the others we have(

∂2f

∂zi1∂zj1

)∣∣∣∣
ziµ=z1δµ1

= −1

2
(R−1)ij + δijg

′
n−2(|z1 + B|)

(C.7)(
∂2f

∂ziµ∂zjµ

)∣∣∣∣
ziµ=z1δµ1

= −1

2
(R−1)ij + δij

gn−2(|z1 + B|)
|z1 + B| µ �= 1.

Therefore the matrix of second derivatives separates into n N × N blocks. For µ = 1 and for
µ �= 1 the eigenvalues of the corresponding matrix are given in terms of the eigenvalues Ri of
Rij by, respectively

−1

2
R−1

i + g′
n−2(|z1 + B|) µ = 1 (C.8)

−1

2
R−1

i +
gn−2(|z1 + B|)

|z1 + B| µ �= 1. (C.9)

From the definition of Rij and from (A.7) we have the following inequalities:

1

β
� 1

2
R−1

i � 1

β

Ñ

ε
(C.10)

that we now use. Consider first equation (C.8). We have seen above that the solution with
z1 > 0 is always present. It is clear (see also figure 1), that in that case (C.8) is negative: in
fact, this solution of (C.3) is such that for that value of z1 the derivative of gn−2 is less than
1/β. With the same argument, it is also clear that among the two solutions with z1 < 0, which
exist if β > βc = n and if h is sufficiently small, the one with the smaller |z1| gives a positive
value for (C.8) for at least one value of i (the argument just before equation (28) concerning
the matrix R−1 shows that there always exists a value of i such that the first equality sign in
(C.10) is satisfied), while for the one with the larger |z1| (C.8) is negative (for the particular
value of h for which these two solutions coincide (C.8) is zero). Thus, if n = 1 (when (C.9)
does not exist), also one solution with negative z1 is a maximum; it is the metastable solution,
with the magnetization opposite to the magnetic field, found in the hysteresis curve. At the
end of the appendix we will show its metastability, i.e., that for such z1 the exponent in (18)
is a local maximum, smaller than the absolute maximum obtained for the positive solution.
However, when n > 1 we can consider (C.9). Substituting any solution of (C.2) we get for
these eigenvalues

−1

2
R−1

i +
1

β

z1

z1 + B
. (C.11)

These terms are negative for the solution with positive z1, while some of them are positive for
the solutions with negative z1 (for which z1 < z1 + B < 0); therefore when n > 1 the only
maximum is that with positive z1.

Now we study the case with h = 0. Now equation (C.5) determines only the modulus
z of the stationary point. There is always a solution z = 0, and, for β > βc, also a solution
with positive z, which is infinitely degenerate for n > 1 and doubly degenerate for n = 1.
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In analogy with the α = 0 case, one should then perform in (18), before applying the saddle
point method, an angular integration over a global rotation. This would give in (25) a further
factor (ln �n)/N , which does not contribute in the thermodynamic limit. In the point z = 0
the Hessian matrix is given by

∂2f

∂ziµ∂zjν

∣∣∣∣
z=0

= −1

2
(R−1)ij δµν + δij δµν

1

n
(C.12)

with eigenvalues

−1

2
R−1

i +
1

n
. (C.13)

Using (C.10), we see that for β < βc this stationary point is a maximum, while for β > βc

it is not a maximum. In the case of a point z∗ whose positive modulus z∗ satisfies the
self-consistency equation for β > βc, we have

∂2f

∂ziµ∂zjν

∣∣∣∣
z=z∗

= δµν

[
−1

2
(R−1)ij + δij

1

β

]
+ δij

z∗
µz∗

ν

z∗2

(
g′

n−2(z
∗) − gn−2(z

∗)
z∗

)
. (C.14)

We can look at this matrix as being given by the sum of two different contributions, which
can be shown to be both negative semi-definite. For the term multiplying δµν this can be
seen from (C.10), while for the term multiplying δij we can reason as follows. The term in
brackets is negative, according to lemma 4 of appendix B, and we only have to study the
matrix Aµν = z∗

µz∗
ν . It is very easy to show that this matrix has an eigenvalue equal to z∗2 and

n − 1 eigenvalues equal to 0. Therefore, coherently with the fact that for h = 0 the stationary
point is infinitely degenerate if n > 1, we find that this point is a maximum, but if n > 1 there
are n − 1 directions along which f ({ziµ}) does not change.

The study restricted to α = 0, where the exponent in (11) depends only on n variables,
can be simply deduced from the above analysis. The expression for the n × n Hessian matrix
is obtained from (C.6) disregarding the indices i and j , substituting δij with 1 and (R−1)ij /2
with 1/β. Exactly the same replacements must be done in the equations from (C.7) to (C.9)
and from (C.11) to (C.14). This is sufficient to argue that exactly the same conclusions can be
reached.

On the basis of the above analysis and of the further arguments given in subsection 4.2,
one gets expression (20) or (32) for the free energy. The magnetization is simply given, using
(19), by

M = lim
N→∞

1

Nβ

∂

∂h
ln Z = lim

N→∞
∂

∂B
(−βF)

=
∑

µ

[
− 1

β
z∗
µ

∂z∗
µ

∂B
+ gn−2(|z∗ + B|) z∗

µ + Bµ

|z∗ + B|
(

∂z∗
µ

∂B
+ x0

µ

)]

=
∑

µ

[
gn−2(|z∗ + B|) z∗

µ + Bµ

|z∗ + B|x
0
µ

]
= z∗

β
(C.15)

where (∂Bµ)/(∂B) = x0
µ is the unit vector in the direction of the µth axis. As explained in

the main text, while the degeneracy of z∗ when h = 0 and β > βc does not affect the free
energy, the actual direction of M in a real system in this case is determined by the boundary
conditions. The equation of state is obtained by computing the specific energy, using (19)
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and (C.15):

U = − lim
N→∞

1

N

∂

∂β
ln Z

= 1

2
− z∗2

2β2
+

z∗

β
· ∂z∗

∂β
− gn−2

(|z∗ + B|) z∗ + B

|z∗ + B| ·
(

∂z∗

∂β
+ h

)

= 1

2
− β2M 2

2β2
− z∗

β
· h = 1

2
(1 − M2) − hM (C.16)

where M = |M |.
We end this appendix by showing that for n = 1 the maximum of the exponent in (11)

and (18) with the magnetization opposite to the magnetic field is only local. Using (19),
the exponent in (11) and (18) at any homogeneous stationary point, when this is in the same
direction as the magnetic field (assumed to be the positive direction of the first axis), is given
by

−1

2
gn−2(|x|) · |x| +

1

2
gn−2(|x|)xB

|x| + ln Gn−2(|x|) (C.17)

where x = z1 + B; it can also be written as

−1

2
gn−2(|x|) · |x| +

1

2
gn−2(|x|)Bsign(x) + ln Gn−2(|x|). (C.18)

The derivative of this expression with respect to |x| gives

1

2
|x|

(
gn−2(|x|)

|x| − g′
n−2(|x|)

)
+

1

2
g′

n−2(|x|)B sign(x). (C.19)

According to the properties of the function gn(x), the first term and the coefficient of sign(x)

in the second term are positive. Knowing also that the solution with magnetization opposite
to the magnetic field has a value of |x| smaller than that of the solution with h and M in the
same direction, it is sufficient to prove that the former, for n = 1, is only a local maximum of
the exponent in (11) and (18).

Appendix D. Canonical and microcanonical entropies

The canonical specific entropy Sc(U) is readily obtained by (32):

Sc(U) = β2 ∂F

∂β
= ln �n−1 + ln Gn−2 [β(M + h)] − βM2 − βMh. (D.1)

In this expression M is a function of β (see (22)), and β is a single-valued function of U
obtainable from (22) and (23) for U in its possible range, −h � U � 1

2 (with the provision
that, when h = 0 and U = 1

2 , β can have any value less than or equal to βc, but in any case
Sc(

1
2 ) = ln �n−1 + ln Gn−2(0)). We have also used that M and h are parallel. To show that

(D.1) is also the microcanonical specific entropy S(U), we first write the partition function
(18) after the change of integration variables ziµ = βxiµ:

Z = �N
n−1β

Nn
2

[(4π)N det J̃ ]
n
2

∫
dNnx exp

[
−N

β

2
− β

4

∑
µ

xT
µJ̃ −1xµ +

∑
i

ln Gn−2 (β|xi + h|)
]

= �N
n−1β

Nn
2

[(4π)N det J̃ ]
n
2

∫
dNnx exp[Nφ(β, {xiµ})] (D.2)

that defines the analytic function φ(β, {xiµ}). Here J̃ij = Rij/β = (1/2Ñ)Jij independent
of β; we have also written explicitly the factor C. A generalization of the treatment in [9]
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(where possible ensemble inequivalence in mean-field type systems is studied) shows that the
microcanonical specific entropy S(U) is given by

S(U) = ln �n−1 − n

2
ln(4π) +

n

2
ln β(U)

+ lim
N→∞

1

N

{
−n

2
ln det J̃ + ln

(∫
dNnx exp

[
min

β
(NβU + Nφ(β, {xiµ}))

])}
(D.3)

where, in the last term of the first line, the dependence on U is that resulting by the extremal
problem represented by the minimization in the exponent of the integral in the second line,
followed by the saddle point computation of the integral. Analogously to what happens in (25)
(see also (31)) the Hessian term in the evaluation of the integral exactly compensates the sum
of the second and third terms of the first line plus the first term in curly brackets. In [9] it is
also shown that, in principle, S(U) � Sc(U), and specific examples are given (for some spin
models not belonging to our class of systems) where this inequality is strict. In our case, using
the results of the stability analysis of the previous appendix, it can be shown that expression
(D.1), with β and the homogeneous magnetization M functions of U as explained, satisfies
the extremal problem in (D.3). Since S(U) cannot be greater than Sc(U), this extremum is
absolute, and therefore S(U) = Sc(U), thus proving ensemble equivalence.
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